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Bandstop Filter Design Using a Dielectric
Waveguide Grating

DONG CHUL PARK, MEMBER, IEEE, GEORGE L. MATTHAEI, FELLOW, IEEE, AND MU SHENG WEI

Abstract — Precision design techniques are obtained for dieletric wave-
guide (DW) bandstop filters with bandwidths up into the 5-10-percent
range. Dielectric waveguide bandstop filters are realized in the form of a
grating in the DW image guide which utilizes notches of varying depth and
Iength. The grating is designed from a transmission-line prototype which
has a prescribed stopband and also prescribed Chebyshev passbands. An
approximate synthesis procedure for such prototypes is presented. Design
data for grating notches were obtained from tests on uniform gratings,
while DW dispersion is compensated for by calculations based on the
“effective dielectric constant” method. Excellent agreement between com-
puted and measured attenuation response is obtained. Two such grating
structures used with loads on one end and a 3-dB coupler can be used to
form a bandpass filter.

I. INTRODUCTION

IELETRIC WAVEGUIDE (DW) gratings with uni-

formly periodic notches can be used as millimeter-
wave or optical-frequency bandstop filters {1],[2]. Though
such uniform gratings can give a strong stopband, their
passbands may have ripples of the order of two decibels or
so, which is excessive for many applications. In order to
obtain Chebyshev passbands with a prescribed low level of
ripple, we require gratings with notches of varying depth
and length. In Fig. 2, a typical attenuation characteristic is
shown for a bandstop filter of this type. This kind of DW
bandstop filter can give stopband widths to the equal- r1p-
ple points up into the 10-percent range.

Some part of this work has been described in [3]. Herein,
we will discuss in more depth a systematic design proce-
dure for the above-mentioned type of bandstop filter, and
a simple procedure for approximate correction of the ef-
fects of DW dispersion. Illustrative theoretical and experi-
mental results will also be presented.

II. CHARACTERIZATION OF THE GRATINGS

The DW gratings we have used in our experimental work
are of the image-guide type with grating notches on the
sides of the guide as shown in Fig. 1. The length of each
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notched and unnotched region of the grating in Fig. 1 is
approximately a quarter guide wavelength at the center of
the grating stopband. We have found gratings of this type
to be advantageous when using the lowest order mode
which has its E-field predominantly vertically polarized.
For that mode, notches on the sides give stronger stopband
attenuation with no nearby spurious responses. However, if
the lowest order horizontally polarized mode is used,
notches on the top of the guide are most effective, and for
some applications that arrangement may be desirable.

We have found that we can model gratings with good
accuracy by use of an equal-line-length transmission-line
equivalent circuit as is shown in Fig. 3(a) with a
frequency-dependent velocity introduced to account for
dispersion [2]. The equal-line-length transmission-line
model with appropriate parameters can also be applied to
represent a grating accurately over a wide band of frequen-
cies even if the electrical lengths of the grating notched and
unnotched sections are fairly unequal [2]. This works pro-
vided appropriate effective values of wave velocity and
impedance ratio r are used in the equal-line-length model.

In order to carry out trial designs such as are described
later in this paper, it is useful to have accurate data for the
effective ratios of the impedances of the notched regions to
those of the unnotched region of uniformly periodic grat-
ings so that in Fig. 1 all notched section widths equal w;
and all lengths of notched and unnotched sections are
ly=1,=1,=1. Also, data is desired for the effective average
wave velocity, which is ascertained from the frequency fy
at which the mid-stopband attenuation 4, occurs in the
grating. (For a uniform grating, a response similar to that
in Fig. 2 is obtained but with unequal ripples. The largest
ripples are adjacent to the stopband. Here, fy is used for
the stopband center frequency for a uniform grating, while
fo 'is used for the stopband center of the desired Chebyshev
designs.) A uniform grating can be modeled by an equal-
line-length transmission-line circuit as in Fig. 3(b) with all
primed impedances equal to Z, (the impedance for the
notched regions). As presented in our previous paper |2],
we can compute the impedance ratio r = Z, /Z, for use in
the equal-line-length model from a measured value of 4 ,,,
(in decibels) for a test grating using the equation
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Fig. 1. An “image guide” dielectric waveguide (DW) grating.
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Fig. 2. Definition of a bandstop filter response.
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Fig. 3. Transmission-line equivalent circuits for gratings. The circuit at

(b) relates to a uniform DW with notches in it.

where 4
max

=) (1b)
and »’ is the number of Z; sections in the equal-line-length
equivalent circuit of the uniform grating. A convenient way
to obtain design data for gratings with varying notch
depths is to make tests on uniform gratings with a range of
notch depths. Using this approach, we first made a Re-
xolite 1422 uniform grating having €, =2.55, 40 Z; (ie,
notched) sections, w, = 0.5 in, /= 0.231 in, and relatively
shallow notches having w;/w,=0.875. The dimensions
were so picked that the theoretical stopband center
frequency for the grating occurred at 10 GHz as estimated
using the effective dielectric constant (EDC) method [4].

T = antilog,, (

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 8, AUGUST 1985

118 T T ‘\ T T T T T T 10.8
- \ .
\
L \ N
_ \ _
\ z
° L \ | 5
'Q'_ 110 \ 10.5 z
vk \ {
- \
L AN .
r \\
- 0 Q .
N
- \\ R
1.00l 1 L L L 1 1 L . 10.0
0 0.5 1.0
w, /Wy

Fig. 4. Measured data for the impedance ratio r and the stopband-center
frequency fJ versus w;/w,, which were obtained from tests on uni-
form gratings.
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Fig. 5. A fundamental section of an infinitely long uniform grating.

We measured the stopband center frequency f; and the
mid-stopband attenuation A4_,,. Next, the same measure-
ments were repeated using increased notch depths (reduc-
ing w; /w,) while keeping / fixed. The impedance ratio r
for each w; /w, can be calculated using (1a) and (1b). The
data we obtained is shown in Fig. 4, and this data will be
used later in realizing a DW bandstop filter. Note that f
increases as w,/w, decreases, indicating an increase in
average wave velocity as the notches are made deeper.
Compensation for this effect is discussed in Section IV.

In order to be able to evaluate the fundamental char-
acteristics of gratings independently from whatever
terminations they are going to have, it is desirable to utilize
parameters of infinitely long uniform gratings. This can be
done in terms of their “image parameters” [5, ch. 3]. Fig. 5
shows the fundamental section of the infinitely long uni-
form grating to be analyzed. Assuming the network in Fig.
5 is a dissipationless network, we compute the input im-

pedance
= .]( Xoc)l
Zm— {j(Xsc)l (2)

where j(X,.); is the impedance at End 1 of the network
with End 2 open-circuited, and j( X, ), is the impedance at
End 1 with End 2 short-circuited. In the stopband, |( X, );]
>|(X,.). and the image attenuation a and the image
phase 8 are given by

(Xoh

(X.0), )

a=tanh™! nepers /section

and

radians /section (4)

B=@n-17
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where (27 — 1) implies an odd multiple. In (2), (X,,); and
(X,,), are obtained as follows:

b b,
(tan?) tan = —r

(X, = Z—— 5)
r tan ? +tan —2—
and
tan %9 +r tan%L
(Xsc)l = ZO 00 01 (6)
1- r( tan —2“) tan 35

where r=2,/Z,>1. If 6,=0,=0=w/2, as for our
equal-line-length model at frequency f{, the above equa-
tions reduce to
1-r
(Xoe)= Zo( 1—:;) (7)

and

1+r) 8)

(Xsc)l = ZO( 1-r
So here (3) becomes

1-r

=tanh~!
a=t 1+r

nepers/section. (9)

Op=0,=0=m/2

In a previous publication [2], we presented a formula for
the fractional bandwidth of the image stopband of a uni-
form, infinite grating, which is given by

A foi—fo_4. (r-1
7= bfo = _sin 1(r+1) (10)

where A is the difference between the upper cutoff
frequency f, and the lower cutoff frequency f, of the
image stopband, and f, is the center frequency of the
stopband. We can use formulas for « and A /f, to roughly
estimate the number of sections needed and the average
value of r that may be needed in the design of practical
bandstop filters. Equation (10) does not include the effects
of DW dispersion, but at least for the narrow-band case
this can be corrected relatively simply by introducing ap-
propriate derivatives of the DW propagation constants.
Equation (10) should be divided by

0y=0,=0

as, o,
a 4
2
f=fo
D= 71 (11a)
2 fo
dB, , , 4B
I af +1 &
2
f = fo
— (11b)
2 fo

where 6, /,, and B, are for DW of impedance Z;, and 6,,
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I, and B, are for DW of impedance Z,.! The phase
variation of dispersive gratings is more rapid than that of
nondispersive gratings so that D is greater than one for
dispersive gratings and reduces to one for nondispersive
gratings. Thus, the effect of dispersion reduces the stop-
band width.,

It should be noted that A in (10) depends only on » and
is the stopband width of a uniform, infinite grating. In
practical cases of finite, nonuniform gratings with
Chebyshev passbands, the stopband width to the equal-rip-
ple points would be somewhat wider than suggested by
(10) when (10) is evaluated using a value of r representa-
tive of the center part of the grating (where the values of r
are largest and nearly uniform). More accurate means for
estimating design requirements will be discussed in Sec-
tions III and V.

IIL

Our bandstop filter design procedure begins by first
obtaining an appropriate transmission-line prototype cir-
cuit which uses equal-length line sections as shown in
Fig. 3(a). Let us regard Fig. 2 as the attenuation response
of the circuit in Fig. 3(a). This idealized attenuation re-
sponse for structures as in Fig. 3(a) can be defined in terms
of Chebyshev polynomials of degree n, the bandwidth, and
the maximum stopband VSWR S, .. An exact general
synthesis for half-wave “low-pass” filter prototypes has
been presented in [6]. By designing for relatively narrow
stopbands, this exact procedure can also be applied to the
synthesis of our bandstop filter prototypes. But for cases
having a large number of elements, as for narrow-band
bandstop filters, the exact method might be too com-
plicated to be practical. Cohn [7] introduced an approxi-
mate synthesis procedure for stepped-impedance trans-
formers by considering only first-order reflection effects.
This approximate procedure is relatively simple and
straightforward so that it can be applied easily to the case
of a large number of elements. It works well if the imped-
ance steps are not very large, which is usually the situation
for narrow-band bandstop filters of the type under consid-
eration here. We have adapted Cohn’s first-order ap-
proximations to the bandstop filter problem with some
modifications. Our method differs from Cohn’s, of course,
in that we synthesize bandstop filters rather than bandpass
transformers, and that we found it desirable to incorporate
the idealized exact expression in (12) for the purpose of
helping to fix some of the design parameters. The trans-
ducer loss (TL) of the circuit in Fig. 3(a), if exactly
designed for a Chebyshev response, is

SYNTHESIS OF BANDSTOP FILTER PROTOTYPES

(Spars = 1)’ TZ(SSIIIT:)
TL =10log,, | 1 + ~—222 : dB
4Smax,.s‘ 2 1
T sinf,
(12)

I Note that, as mentioned previously, the actual electrical lengths 8, and
6, and physical lengths /; and /; need not be equal, even though we
model the grating with equal line lengths.
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where T (x) is the Chebyshev polynomial of degree n, S,
is the maximum stopband VSWR, 8, is the electrical
length of each section at the lower stopband edge frequency
f; denoted in Fig. 2, and

7 i

0,=>+. 13

1 2 fO ( )

S max, s €an be defined as the product of the junction VSWR’s
Smax,s =ViVy Vi (14)

where V; is the junction VSWR of the ith junction given by

z, \*!
V‘=(Z,_1) >1. (15)

In this equation, an appropriate sign has to be chosen in
order to have V, greater than one since the Z, values
alternate up and down. Also, 8, is related to the equal-rip-
ple bandwidth (Af),, through the bandwidth ratio p

f 2+(A;)er

N A 16

TR, @, 1o
fo

where f; and f, are the lower and upper stopband edge
frequencies, respectively, as shown in Fig. 2, and

_fZ_fl
(Af)er— fO

(17)

where f, is the center frequency of the stopband. Using
(13) and (16), we get
m

=115

(18)

The degree n of the Chebyshev polynomial is the same as
the number of sections inserted between the terminating
impedances Z; and Z, _, in Fig. 3(a). We can derive a very
useful formula for » using 6,, S, and the maximum
passband VSWR denoted by S, ,. Calculation of the
transducer loss at 8 = 6,, using (12), gives

ax, §?

(Sma.x,s _—1)2 1
4S8

max, s 1
’ 2
T, ( sind, )
(19a)
(19b)

TL|0=01 = 1010g10 1 +

=101log;q
1- !pmax,plz

where |py,,, ,| is the magnitude of the maximum passband
reflection coefficient and is given by
byl = L
mapt o §, +1

max, p

(20)

Equation (19b) can also be written in a form similar to
(19a), that is,

|Pmax, ol

1+ -
1= 1Pmax, pl

TL|j.s =10log,,

). (21)
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After some mathematical manipulation using (19a) and
(21), we finally get the following equation:

cosh™1§

n= (22)
cosh™! 1
sind,
where
S =1 [ Spaw, 1\
= et L -1. (23)
2 Smax,s Smax,p -1

Therefore, if 6, Sy, ,» and S, ,, or equivalently the
fractional bandwidth, the maximum stopband attenuation,
and the specified passband ripple size, are given, we can
calculate the number of sections to be inserted between the
two terminating impedances of Z; and Z, ., by use of (22)
and (23).

It may be well to note at this point that the
transmission-line prototype having the response given by
(12) does not include the effects of the stopband-width
shrinkage that will occur due to dispersion. For this reason,
an oversized fractional stopband width should be used in
the design of the prototype. These matters will be discussed
in Section V.

After we have calculated n for given specifications, we
need to calculate the junction VSWR’s V, or the normal-
ized section impedances Z,. For the approximate synthesis
purpose, as done by Cohn for the case of step-transformer,
we assume that steps are so small that the reflection
interaction between steps can be neglected in the prototype
circuit in Fig. 3(a). Then, the total reflection coefficient of
the bandstop filter prototype referred to at the center of
the filter structure is expressed as follows:

o= Alej”o - Azel(ﬂ—2)0 + ... +(..1)"An+le—jn0 (24)

where the A4,’s are the junction reflection coefficient magni-
tudes, which are given by
Z, - Zt—l

A =%

—tz5z., 70

fori=1,2,---,n+1. (25)
The magnitude of the step reflections are assumed to be
symmetrical, i.e, 4, =4, ,, A, = A,, etc. Therefore, for n
odd

(n—-1)/2

p=7 go [(-1)*24,.,sin(n-2k)8]  (26)

and for »n even

Ay, when n=10
(n—2,2
p={ X (-1)*24,,cos(n—2k)8+(-1)"" P gn2,.
k=0 2
when n > 2
(27)

In order to obtain Chebyshev passbands, p in (26) and (27)
is forced to be equal to a Chebyshev polynomial a7,(x),
where « is a constant which need not be explicitly evaluated



PARK et al.: BANDSTOP FILTER DESIGN

and

- nd; @
For n=0,1, and 2
n=0: p=aly(x)=a

=4,

A =a

n=1 p=ali(x)=ax

= j2A,sinfd = j2A,xsinb,

A1=j2s‘ixn01

n=2 p=aTy(x)=a(2x?-1)=2ax’—a

=2A4,cos20 — 4,

=—44,x*sin*0,+24,— 4,
[+ o
om0, 2T e,

We keep going until the desired value of »n is reached.
Similarly to Cohn [7], this procedure can be tabulated and
generalized as shown in Table I.

The following points should be noted.

1) In the upper left-hand corner of the table, always
insert a number for a. Pick a=2 for simplicity.

2) With a =2, in the second column, second row, always
insert

- (29)

1
*0= Sin6, -

3) To find an additional entry in the first column,
multiply the element on the right just above by 2x, and
then subtract the element in the second row directly above
the entry to be found.

4) To find an additional entry in any other column, add
the elements on the left and right just above and multiply
by x,, and then subtract the element in the second row
directly above the entry to be found.

5) Where an element is absent, assume it to be zero.

6) The A, values will appear in every other space in each
row, and the elements on the principal diagonal of the
array constructed in this manner are values for A4, for
different values of n.

7) The values of 4, obtained using the method of Table
I may differ from those obtained directly from Chebyshev
polynomials by a common factor. However, since we need
only the ratios of the 4,, it does not matter.

Following the above procedure, we are able to determine
the following junction reflection—coefficient magnitude
ratios:

(30)

where a, = A, /A,. Assuming the impedance steps are small,

At Ay -t A =atayt s ta,
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TABLEI
COMPUTATION OF 4, RATIOS
n=0 a
a
=1
2sinf
a a
n=2 —a
2 2
sin“¢, 2sin®4,
etc.

(25) can be written approximately as

1, Z,
Ai" iiln—2:>0.

(31)

Plugging (31) into (30) and performing some manipulation
gives

ZO ZZ Zn+l

a ta,+ - ta,,

z VA z
ai(ln——l—+ln~i+ cor +InE )

3

for n odd

ZO n

a,ta,+---+a,,

ZI Zl Zn+1
a,.(ln +1n22+ <o +In -

’

for n even

a,(InV,+WnV,+ --- +InV, )
aytayt - ta,y,

aln(ViV, V1)

ata,+ - +a,,

a,ln(S

= max,s)
a;ta,+ - +a, .,

(32)

Knowing the a; by use of Table I and (30), and knowing
Somax, s» WE can then compute all the ratios Z;/Z, , by use
of (32).

As shown above, the normalized impedance of each
section is obtained using the first-order approximation,
while the number of sections needed is calculated using the
exact formula of (22). We computed the attenuation re-
sponses of some idealized designs using (12) and compared
them with responses of approximate designs obtained using
the first-order theory. They agreed very well in the maxi-
mum attenuation 4,,,, but showed big differences both in
the equal-ripple bandwidth and in the ripple size. An
approximate design showed 20-dB maximum attenuation,
18-percent equal-ripple bandwidth, and 0.000065-dB ripple
as compared to a 20-dB maximum attenuation, 10-percent
bandwidth, and 0.00087-dB ripple design objective. These
discrepancies in the equal-ripple bandwidth and the ripple
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size are believed to have come from neglecting the higher
order reflections and from the approximation used in (31).

In order to reduce such errors, some modifications were
made in the design procedure. From (12), it can be shown
that the input reflection coefficient for an exact Chebyshev
bandstop design is

sind
S —1 "\ sind;
e
sind,
Pe= — (33)
T2 ﬂ_)
S =1 " (sina
1+ ( max, § ) 1

4Smax,s Tz( 1 )

n il
sinf,

The corresponding approximate equation which is con-
sistent with ignoring higher order reflections is

Tn( s'in0 )
1 sind,
o, =5 n(S

max,s) -—T_ .
T"( sin6’1)

(Equation (34) is analogous to [7, eq. (36)] for the step-
transformer case.) A correction was introduced by making
the ripple sizes of (33) and (34) the same at the band edge.
By replacing #; with 8] in (34) and setting p,|s_g; = p.lg—s,,
we get

(34)

1
0;=sin"! (35)

1 ¢
osh(—--———cOSh S sh‘l( .1 ))
sin 6,

cosh™! S
where § is given in (23), 4, is given in (18), and

_ 10(Shan,s)
S

S’ -1 (36)
max, p
Parameter #] calculated using (35) is then used in place of
8, to generate Table I, that is, in (29), 8] replaces 4.
Application of this approach to examples showed that
use of (35) in (29) resulted in a greatly improved accuracy
in the passband ripple (the decibel passband ripple was
typically within a factor of 1.1 or better of the specified
decibel value instead of being off by more than a factor of
ten in some cases). However, the fractional bandwidth at
the equal-ripple level was only moderately improved. In
the previously cited example having a 10-percent equal-rip-
ple bandwidth objective, the use of (35) resulted in a
15-percent equal-ripple bandwidth as compared with 18-
percent when (35) was not used. Importantly, the agree-
ment at the 3-dB bandwidth level was much better. For the
same example, the stopband width at the 3-dB level for an
exact design was 7.2 percent, for an approximate design
obtained utilizing (35), the 3-dB stopband width was 7.8
percent, while, without the correction in (35), the width
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was 8.7 percent. In all cases, the desired peak attenuation
was obtained with high accuracy.

The 3-dB bandwidth (Af); 4 can be well estimated
using (12). Let 6, 45 be the electrical length of each section
at the lower 3-dB frequency of the stopband; then from
(12)

2 Smax 5
045 =sin"" {(Sin 01)cosh[%003h‘1{ S_‘/:j:—l

max, s

|| &

cosh

. (ncosh_1

where 8, is given in (18), and

Bf)sap _,_ 40san
fo T

The prototype circuits for bandstop filters of the form in
Fig. 3(a) typically have increasing values of Z,|,_ 44 as
one moves towards the center of the filter and decreasing
values of Z, |, _ ..., a5 one moves towards the center of the
filter. This is not very practical for DW gratings. A more
practical form is shown in Fig. 3(b), where all of the
even-numbered sections have been replaced by line sec-
tions of impedance Z,, while the odd-numbered sections
are all of an impedance higher than Z,. This configuration
is then amenable to being realized as a uniform DW with
notches cut into it to create the higher impedance line
sections. An approximate procedure for converting designs
as in Fig. 3(a) to the form in Fig. 3(b) is to make

(38)

z ., 2

Zz~1 Zz i
Z/|=0da = Zo 7 . (39a)
Zz, 1=even ZO' (39b)

This procedure was found to affect the responses of trial
designs very little. For example, a design having a 0.00087-
dB ripple objective, the ripples near cutoff are a little large
but taper down to be less than the design objective at low
frequencies, as are shown in Fig. 8(b). The approximation
has virtually no effect on the stopband.

It is helpful as a design guide if we have theoretical plots
showing the relations between the number of grating
notches and the equal-ripple bandwidth, and also between
the maximum impedance ratio r,,, (which is the normal-
ized impedance at the center of the grating) and the
bandwidth, for given maximum stopband decibel attenua-
tion A .. and passband decibel ripple size 4,. Using (22)
and the generalized synthesis procedure in Table I, we
made theoretical plots in Fig. 6. Fig. 6(a) is the plot for a
bandstop filter prototype with 4, =20 dB and 4,=
0.00087 dB, which gives a minimum of 37-dB return loss in
the passbands, such as might be a desirable goal if filters
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Fig. 6. Theoretical plots to be used in estimating the number of notches
n and the maximum impedance ratio r,,,, required in a bandstop filter
prototype having a given equal-ripple bandwidth, passband ripple 4,,
and maximum attenuation A4, .

like this are used as gratings in a bandpass filter like that in
Fig. 11. Fig. 6(b) and (c) are generalized plots for 4, = 20
dB and 4, = 30 dB, respectively, with 4, as a parame-
ter.

IV. REALIZATION OF A BANDSTOP FILTER FROM A
TRANSMISSION-LINE PROTOTYPE

In order to realize the prototype circuit in Fig. 3(b) with
a uniform DW having notches cut in it, the length, width,
and location of each notch must be determined. Using the
measured design data such as that shown in Fig. 4, we can
determine the value of w,/w, (hence, the required notch
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Fig. 7. At (a) is shown a period of a uniform grating whose stopband-
center frequency is fJ. At (b) is shown a period whose dimensions are
altered to give a stopband-center frequency f,.

depth) for a given impedance ratio r,= Z//Z, (see Fig.
3(b)). Therefore, if we fix w,, the w, required for notch
section i can be determined knowing r, of the correspond-
ing prototype section. Next, we have to determine the exact
length of each line section in order for every period of the
grating to be resonant at the same frequency f, (which is
the center frequency of a bandstop filter) regardless of the
notch depth. By a period of the circuit in Fig. 3(b) we
mean a section composed of a given notch plus half of the
Z, section on each side as in Fig. 7. Using the design data
in Fig. 4 once again, we can read the value of the stopband
center frequency f; for a given notch depth (i.e, w,/w,
value). We need to adjust every period of the circuit in Fig.
3(b) so as to have the same resonant frequency fy = f, (the
desired stopband center frequency of the filter). This length
correction scheme is shown in Fig. 7, where P is the period
of the test grating and P, is the period of the length-cor-
rected grating section. Now, let 8,;. be the average propa-
gation constant at the resonant frequency f; of the test
grating with the desired w, /w, value. Then

lBaveP|f=f6 =7 radians (40)
where B,,. is defined as
B+ 8B
Buve= "5 (41)

and B, and B, are the propagation constants of Z; and Z,
sections, respectively. The parameter 8,,, varies from one
section of a filter structure to another because of the
varying notch depths. For a given section of the structure
with average phase constant f,,., and by using a Taylor
series expansion, we obtain

d P
Bave Ply=f, = Buve Plyps + —(_%/Vf_l}h f/(f 0= 15)
‘ d(B...P ,
o WD (o) @)

Now let P, be the corrected length such that at the desired
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center frequency f,

BueP.|jmy=m  radians. (43)
Then, from (42) and (43)
fﬁ _ BavePcIf=f0 . T
P BaveP|f=f0 BaveP|f=f0
aT
- L ()
d(BueP)
7 R (fo - fo’)
Y

In our trial design, the quantities d(B,,.P)/df |, in (44)
were evaluated using the effective dielectric constant (EDC)
method, and corrected periods P, were computed for the
entire structure. The corrected length / for each period (see
Fig. 7(b)) was then scaled to bring the entire structure into
synchronism at the same frequency f,.

V. CONCERNING THE CORRECTION OF DESIGN
BANDWIDTH TO ALLOW FOR DISPERSION

In the synthesis of a prototype as in Section III, it is
necessary to use an oversized stopband width because this
width will shrink due to dispersion in the DW filter. A
simple way to estimate dispersion in the DW filter is to
estimate the nominal impedance ratio r in the center part
of the filter where the values of r are largest and nearly
uniform. By regarding the maximum impedance ratio r,,,,
(which is the impedance ratio at the center of the filter) as
the nominal ratio in the center part of the filter, we
developed a procedure to estimate r,,, from the design
specifications. This procedure used some of the concepts in
[9] where sections of a lumped-element, low-pass filter
prototype designed on the insertion-loss basis were related
to corresponding transmission-line filter sections with the
aid of image analysis. Following the idea in [9], we can

derive an expression for r,,, given by
2-M)+21- M
- B (45)
where
A
M= zsinzl:%(1~————————( 2?“)] (46)
8k8k+1 ( “/1) 0

where g, and g,,, are the two center elements of a
low-pass prototype [S, ch. 4] having the desired passband
ripple and a number of elements n obtained using an
estimated 6, value in (22). The parameter o} is the cutoff
frequency of the low-pass prototype. After estimating 7,
by use of (45) and (46), the notch and spacing dimensions
in the center of the filter can be estimated with the aid of
Fig. 4 and (44). Having estimated dimensions for the
dominant part of the grating, an estimated value of the
parameter D can be obtained using (11b) and the EDC
method [4]. For purposes of designing the transmission-line
prototype as discussed in Section ITI, the desired fractional
bandwidth should be multiplied by D to compensate for
the stopband-width shrinkage that will result from disper-
sion.
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Fig. 8. (a) The computed attenuation characteristics of a trial grating
design including correction for dispersion. (b) The solid line shows the
computed passband ripple characteristic for a design of the form in Fig,
3(b).

As an example, for the previously discussed trial design
with 0.00087-dB passband ripple, by (45) and (46) we
estimated r,,, =1.117, while r,,, obtained from the whole
synthesis was 1.125. From this estimated r_,, of 1.117 and
the design data in Fig. 4, w;/w,=0.46 and f;=10.53
GHz were obtained. Then using the length correction
equation of (44) for P=2L = 0.462 in and f,=10 GHz,
we got P /P =1.071. At this point, the lengths and the
widths of the center fundamental section were estimated.
Finally, D in (11b) was calculated. The derivatives in (11b)
were calculated using the EDC method [4] and we obtained
D =1.321. The prototype had a 3-dB stopband width of
7.82 percent. Therefore, the dispersion-corrected 3-dB
stopband width for the DW bandstop filter can be esti-
mated as 7.82 (percent)/1.321 = 5.92 percent. A more com-
plete calculation using a linear correction for dispersion
computed for each individual section gave 5.93 percent,
while the measured stopband width at the 3-dB level was
6.05 percent. The approximate procedure for estimating
the dispersion-corrected bandwidth seems to work very
accurately.

VI

Using the realization procedure mentioned in Section
1V, a DW bandstop filter was fabricated whose theoretical
responses were computed to be as shown in Fig. 8(a) and
(b). The DW utilized Rexolite 1422, which has €, = 2.55,
and the guide was 0.4-in high by 0.5-in wide with notches
as in Fig. 1 ranging from 0.021-in deep at the ends to

EXPERIMENTAL RESULTS
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Fig. 9. The measured attenuation characteristic for the same design as
in Fig. 8(a) and (b).
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Fig. 10. The solid line shows the measured return-loss characteristic for
the same bandstop grating as in Fig. 9. The dashed line suggests the
limit of sensitivity of the measurement system.

0.141-in deep at the center of the grating. Fig. 9 shows the
measured attenuation, which is in excellent agreement with
the theoretical response. The floor attenuation in Fig. 9 is
due to the loss of the mode launchers at the ends and the
dissipative loss of the guide itself. The measured peak
attenuation is almost exactly 20 dB above the attenuation
floor, while the 3-dB stopband bandwidth is about 6.05
percent as compared to a theoretically estimated 5.92 per-
cent, as mentioned in Section V. Fig. 10 shows the mea-
sured return loss. The dashed line shows the return loss of
a load on the dielectric waveguide without a grating and
suggests the measurement limits of the test setup, which
included a mode transducer from metal guide to DW. The
solid line shows the measured return loss of the filter, and
it is seen to have stronger sidelobes than the desired
- 37-dB maximum. Computer studies suggest that errors in
the desired very low sidelobes could easily be due to some
lack of synchronism between the various parts of the
grating having different notch depths.

VIL

Precision bandstop grating designs of this sort also have
potential application for use in bandpass filters. Fig. 11
shows a bandpass filter made with a 3-dB coupler and two
gratings with loads at their right ends. It can be shown that
when the gratings are reflecting, power entering the coupler
at port 1 will emerge at port 2 yielding a passband.
However, when the gratings are not reflecting, power enter-
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Fig. 11. A bandpass filter formed from two DW bandstop gratings plus

a DW 3-dB coupler.

ing at port 1 will pass through the gratings and be ab-
sorbed by the loads at the right, thus creating a stopband
with respect to transmission from port 1 to port 2.
Matthaei et al. [2] have discussed the fundamentals of a
bandpass filter techniqueé which uses parallel gratings with
coupling between them. However, that technique appears
to be most practical for filters having bandwidths of the
order of one percent since, when using that technique, the
passband width of the filter must be considerably less than
the image stopband width of the gratings. It can be shown
that the structure in Fig. 11 has potential application for
passband widths up into the 5-10-percent range. This is
because, for the structure in Fig. 11, the passband for
transmission from port 1 to port 2 corresponds to the full
width of the grating stopband. ‘

VIII.

Precision design and realization procedures have been
obtained for DW bandstop filters. The design process
utilized a transmission-line prototype filter which was de-
signed using various simplifying approximations. The re-
sulting prototypes gave the desired passband ripple and the
desired attenuation characteristic at the 3-dB level or above
with good accuracy, but tended to give an oversized stop-
band width at the equal-ripple level. The results of a trial
design with extremely demanding design objectives yielded
an attenuation characteristic which was in most respects in
excellent agreement with the objective. A simple dispersion
correction method which uses the combination of the image
and insertion-loss points of view has been presented and it
worked very well. The much more sensitive return-loss
characteristic did not meet the very difficult —37-dB side-
lobe objective as well, but it is believed that by use of more
precise design data appreciably more precise return loss
should be possible.

CONCLUSIONS
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