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Bandstop Filter Design Using a Dielectric
Waveguide GraLting

DONG CHUL PARK, ~MBER, IEEE, GEORGE L. MATTHAEI, FELLOW, IEEE, AND MU SHENG WEI

Abstract –Recision design techniques are obtained for dieletric wave- notched ancl unnotched region of the grating in Fig. 1 is
guide (DW) bandstop filters with baudwidths up into the 5-10-perceut

range. Dielectric waveguide bandstop filters are realized iu the form of a

grating in the DW image guide which utifizes notches of varyiug depth and

length. The grating is designed from a transmission-fine proto~ which

has a prescribed stopband and afso prescribed Chebyshev passbands, An

approximate synthesis procedure for such prototypes is presented. Design

data for grating notches were obtained from tests on uniform gratings,

while DW dispersion is compensated for by cafcrdations based on the

“effective dielectric constant” method. Excellent agreement between com-

puted and measured attenuation response is obtained. Two such grating

structures used with loads on one end and a 3-dB coupler can be used to

form a bandpass filter.

I. INTRODUCTION

D IELETRIC WAVEGUIDE (DW) gratings with uni-

formly periodic notches can be used as millimeter-

wave or optical-frequency bandstop filters [1], [2]. Though

such uniform gratings can give a strong stopband, their

passbands may have ripples of the order of two decibels or

so, which is excessive for many applications. In order to

obtain Chebyshev passbands with a prescribed low level of

ripple, we require gratings with notches of varying depth

and length. In Fig. 2, a typical attenuation characteristic is

shown for a bandstop filter of this type. This kind of DW

bandstop filter can give stopband widths to the equal-rip-

ple points up into the 10-percent range.

Some part of this work has been described in [3]. Herein,

we will discuss in more depth, a systematic design proce-

dure for the above-mentioned type of bandstop filter, and

a simple procedure for approximate correction of the ef-

fects of DW dispersion. Illustrative theoretical and experi-

mental results will also be presented.

II. CHARACTERIZATION OF THE GRATINGS

The DW gratings we have used in our experimental work

are of the image-guide type with grating notches on the

sides of the guide as shown in Fig. 1. The length of each
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approximately a quarter guide wavelength at the center of

the grating stopband. We have found gratings of this type

to be advantageous when using the lowest order mode

which has its E-field predominantly vertically polarized.

For that mode, notches on the sides give stronger stopband

attenuation with no nearby spurious responses. However, if

the lowest order horizontally polarized mode is used,

notches on the top of the guide are most effective, and for

some applications that arrangement may be desirable.

We have found that we can model gratings with good

accuracy by use of an equal-line-length transmission-line

equivalent circuit as is shown in Fig. 3(a) with a

frequency-dependent velocity introduced to account for

dispersion [2]. The equal-line-length transmission-line

model with appropriate parameters can also be applied to

represent a grating accurately over a wide band of frequen-

cies even if the electrical lengths of the grating notched and

unnotched sections are fairly unequal [2]. This works pro-

vided appropriate effectiue values of wave velocity and

impedance ri~tio r are used in the equal-line-length model.

In order to carry out trial designs such as are described

later in this paper, it is useful to have accurate data for the

effective ratios of the impedances of the notched regions to

those of the unnotched region of uniformly periodic grat-

ings so that in Fig. 1 all notched seetion widths equal WI

and all lengths of notched and unnotched sections m-e

10= 11= 1,= 1. Also, data is desired for the effective average

wave velocity, which is ascertained from the frequency f~

at which the mid-stopband attenuation A ~= occurs in the

grating. (For a uniform grating, a response similar to that

in Fig. 2 is c~btained but with unequal ripples. The largest

ripples are adjacent to the stopband. Here, f~ is used for

the stopbandl center frequency for a uniform grating, while

f. ‘is used for the stopband center of the desired Chebyshev

designs.) A uniform grating can be modeled by an equal-
line-length transmission-line circuit as in Fig. 3(b) with all

primed impedances equal to Z1 (the impedance for the

notched regions). As presented in our previous paper [2],

we can compute the impedance ratio r = Z1/ZO for use in

the equal-line-length model from a measured value of A mm
(in decibels) for a test grating using the equation

0018-9480/85 /0800-0693 $01.00 019:85 IEEE
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Fig. 1. An “ image guide” dielectric waveguide (DW) grating
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Fig. 2. Definition of a bandstop filter response.
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Transmission-line equivalent circuits for gratings. The circuit at

(b) relates to a uniform DW with notches in it.
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and n‘ is the number of ZI sections in the equal-line-length

equivalent circuit of the uniform grating. A convenient way

to obtain design data for gratings with varying notch

depths is to make tests on uniform gratings with a range of

notch depths. Using this approach, we first made a Re-

xolite 1422 uniform grating having ~,= 2.55, 40 ZI (i.e.,

notched) sections, W. = 0.5 in, 1= 0.231 in, and relatively

shallow notches having WI/ W. = 0.875. The dimensions

were so picked that the theoretical stopband center

frequency for the grating occurred at 10 GHz as estimated

using the effective dielectric constant (EDC) method [4].
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Fig. 4. Measured data for the impedance ratio r and the stopband-center

frequency ~~ versus WI/ W., which were obtained from tests on uni-

form gratings.
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Fig. 5. A fundamental section of an infinitely long uniform grating.

We measured the stopband center frequency f; and the

mid-stopband attenuation A ~m. Next, the same measure-

ments were repeated using increased notch depths (reduc-

ing wl/ W. ) while keeping 1 fixed. The impedance ratio r

for each wl/wO can be calculated using (la) and (lb). The

data we obtained is shown in Fig. 4, and this data will be

used later in realizing a DW bandstop filter. Note that f~

increases as WI/ WO decreases, indicating an increase in

average wave velocity as the notches are made deeper.

Compensation for this effect is discussed in Section IV.

In order to be able to evaluate the fundamental char-

acteristics of gratings independently from whatever

terminations they are going to have, it is desirable to utilize

parameters of infinitely long uniform gratings. This can be

done in terms of their “image parameters” [5, ch. 3]. Fig. 5

shows the fundamental section of the infinitely long uni-

form grating to be analyzed. Assuming the network in Fig.

5 is a dissipationless network, we compute the input im-

pedance

Z,n = (j(%)l
j(%)l

(2)

where .j( XOC)~ is the impedance at End 1 of the network
with End 2 open-circuited, and j( X,c) ~ is the impedance at

End 1 with End 2 short-circuited. In the stopband, 1(XJII

> 1(XOC)11, and the image attenuation a and the image
phase /3 are given by

{

(%,),~. tanh–l —
(X,c),

nepers/section (3)

and

p=(2n-1): radians/section (4)
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where (2n – 1) implies an odd multiple. In (2), ( XOC)~ and

and

( X,C)l are obtained as follows:

e. fll

()
tan~ tan— - r

(%.)1=20 ~ 28

rtan~+tan~
2 2

00 t31
tan~+rtan~

(X,c)l = Zo

()
l–r tans tan%

where r = Z,/Zo >1. If 00= 61 = f3= n-/2,

(5)

(6)

as for our. .
equal-line-length model at frequency f~, the above equa-

tions reduce to

()(%.)1 = Zo ~

and

()(X,c), = z, ~ .

(7)

(8)

So here (3) becomes “

l–ra.tanh-l —
l+r 00=91=O=W1Z

nepers/section. (9)

In a previous publication [2], we presented a formula for

the fractional bandwidth of the image stopband of a uni-

form, infinite grating, which is given by

~ fb–fo 4 . ._l r–l

fo=T==sln (–)1r+l Oo=ijl=e
(lo)

where A is the difference between the upper cutoff

frequency fb and the lower cutoff frequency f. of the

image stopband, and f. is the center frequency of the

stopband. We can use formulas for a and A/f. to roughly

estimate the number of sections needed and the average

value of r that may be needed in the design of practical

bandstop filters. Equation (10) does not include the effects

of DW dispersion, but at least for the narrow-band case

this can be corrected relatively simply by introducing ap-

propriate derivatives of the DW propagation constants.

Equation (10) should be divided by

de. del

~+ df

2

D==
/=/0

(ha)
771——
2 fo

d~o + ~ d~l
——

10 df 1 df

2
/=/0

= (llb)
‘n-l——
2 fo

where 6., l., and P. are for DW of impedance Z& and 61,

11, and /11 are for DW of impedance Z1.l The phase

variation of dispersive gratings is more rapid than that of

nondispersive gratings so that D is greater than one for

dispersive gratings and reduces to one for nondispersive

gratings. Thus, the effect of dispersion reduces the stop-

band width.

It should be noted that A in (10) depends only on r and

is the stop band width of a uniform, infinite grating. In

practical cases of finite, nonuniform gratings with

Chebyshev passbands, the stopband width to the equal-rip-

ple points would be somewhat wider than suggested by

(10) when (10) is evaluated using a value of r representa-

tive of the center part of the grating (where the values of r

are largest and nearly uniform). More accurate means for

estimating design requirements will be discussed in Sec-

tions III and V.

III. SYNTHESIS OF BANDSTOP FILTER PROTOTYPES

Our bandstop filter design procedure begins by first

obtaining an appropriate transmission-line prototype cir-

cuit which uses equal-length line sections as shown in

Fig. 3(a). Let us regard Fig. 2 as the attenuation response

of the circuit in Fig. 3(a). This idealized attenuation re-

sponse for structures as in Fig. 3(a) can be defined in terms

of Chebyshev polynomials of degree n, the bandwidth, and

the maximum stopband VSWR S~a ,. An exact general

synthesis for half-wave “low-pass” filter prototypes has

been presented in [6]. By designing for relatively narrow

stopbands, this exact procedure can also be applied to the

synthesis of our bandstop filter prototypes. But for cases

having a large number of elements, as for narrow-band

bandstop filters, the exact method might be too com-

plicated to be practical. Cohn [7] introduced an approxi-

mate synthesis procedure for stepped-impedance trans-

formers by considering only first-order reflection effects.

This apprc}ximate procedure is relatively simple and

straightforward so that it can be applied easily to the case

of a large number of elements. It works well if the imped-

ance steps am-enot very large, which is usually the situation

for narrow-band bandstop filters of the type under consid-

eration here. We have adapted Cohn’s first-order ap-

proximations to the bandstop filter problem with some

modifications. Our method differs from Cohn’s, of course,

in that we synthesize bandstop filters rather than bandpass

transformers, and that we found it desirable to incorporate

the idealized exact expression in (12) for the purpose of

helping to fix some of the design parameters. The trans-

ducer loss (TL) of the circuit in Fig. 3(a), if exactly

designed folr a Chebyshev response, is

1Note that, a~s mentioned previously, the actual electrical lengths 00 and

(3I and physical lengths [0 and 11 need not be equal, even though we
model the grating with equal line lengths.
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where Tn(x ) is the Chebyshev polynomial of degree n, I&m,,

is the maximum stopband VSWR, /31 is the electrical

length of each section at the lower stopband edge frequency

~1 denoted in Fig. 2, and

(13)

s mm,, can be defined as the product of the junction VSWRS

smm,. =~lL” “ “Jfl+l (14)

where ~. is the junction VSWR of the i th junction given by

()

*1

~= > >1. (15)
1–1

In this equation, an appropriate sign has to be chosen in

order to have ~ greater than one since the Z, values

alternate up and down. Also, 01 is related to the equal-rip-

ple bandwidth (A f ),, through the bandwidth ratio p

~+ (Af)er

f

‘= f=2_(A;)e,

f,

(16)

where fl and fz are the lower and upper stopband edge

frequencies, respectively, as shown in Fig. 2, and

(Af)er=& (17)

where f. is the center frequency of the stopband. Using

(13) and (16), we get

(9,=J-
l-+p”

(18)

The degree n of the Chebyshev polynomial is the same as

the number of sections inserted between the terminating

impedances 20 and Z.+ ~ in Fig. 3(a). We can derive a very

useful formula for n using 81, S~m, ,, and the maximum

passband VSWR denoted by S~m, ~. Calculation of the

transducer loss at 6 = 131,using (12), gives

I (sma. -l)2 1
TLIO=O, =lOlog10 1 + 4S’

max, s

()

T; ~

sm 01 1

1
=lolog~~

l–lPmaJ2

(19a)

(19b)

where lp~=,,1 is the magnitude of the maximum passband
reflection coefficient and is given by

Equation (19b) can also be written in a form

(19a), that is,

(20)

similar to

(21 )

After some mathematical manipulation using (19a) and

(21), we finally get the following equation:

cosh –1s

~=

()

1
cosh – 1 —

sin el

(22)

where

Therefore, if t?l, S~a, ,, and S~u, ~, or equivalently the

fractional bandwidth, the maximum stopband attenuation,

and the specified passband ripple size, are given, we can

calculate the number of sections to be inserted between the

two terminating impedances of .20 and Z~+ ~ by use of (22)

and (23).

It may be well to note at this point that the

transmission-line prototype having the response given by

(12) does not include the effects of the stopband-width

shrinkage that will occur due to dispersion. For this reason,

an oversized fractional stopband width should be used in

the design of the prototype. These matters will be discussed

in Section V.

After we have calculated n for given specifications, we

need to calculate the junction VSWRS VI or the normal-

ized section impedances Z,. For the approximate synthesis

purpose, as done by Cohn for the case of step-transformer,

we assume that steps are so small that the reflection

interaction between steps can be neglected in the prototype

circuit in Fig. 3(a). Then, the total reflection coefficient of

the bandstop filter prototype referred to at the center of

the filter structure is expressed as follows:

p = A1eJne – A2eJc”-Z)e + . . . +(–l)”A~+le “n’ (24)

where the A6’s are the junction reflection coefficient magni-

tudes, which are given by

z–z
A1=+Z’+Z’-l>O, fori=l,2,. ... n+l. (25)

1 z—1

The magnitude of the step reflections are assumed to be

symmetrical, i.e., Al = An+ ~, A* = An, etc. Therefore, for n

odd

(n – 1)/2

p=j ~ [(–l)~2A~+l sin(n–2k)6] (26)
k=O

and for n even

I

Al, when n = O
01– 2)/2

p=
~ (-l)kzAk+lCOS(n -’2.k)o+(-l)(n/2)ftn+ 2,.

k=O 2

when n >2

(27)

In order to obtain Chebyshev passbands, p in (26) and (27)

is forced to be equal to a Chebyshev polynomial aTn( x ),

where a is a constant which need not be explicitly evaluated
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and

sin 6
x s—

sin 61”

Forn=O, 1, and2

~=(-j: p=aTO(x) = a

= Al

.-. A1=a

~=1: p = aT1(x) = ax

= j2A1 sine = j2A1x sinf31

~=z:

.“. A1= :
j2 sm61

(28)

p=aT~(x) =a(2x2–l)=2ax*–a

=2 A1COS28– A2

=2 A1(l–2x2sin201)– A2

= –4A1x2sin201+2A1– AZ

.“. A1=–-& 42=–++a.
2 sin2 el sm 81

We keep going until the desired value of n is reached.

Similarly to Cohn [7], this procedure can be tabulated and

generalized as shown in Table I.

The following points should be noted.

1) In the upper left-hand corner of the table, always

insert a number for a. Pick a = 2 for simplicity.

2) With a = 2, in the second column, second row, always

insert

(29)

3) To find an additional entry in the first column,

multiply the element on the right just above by 2X0 and

then subtract the element in the second row directly above

the entry to be found.

4) To find an additional entry in any other column, add

the elements on the left and right just above and multiply

by XO, and then subtract the element in the second row

directly above the entry to be found.

5) Where an element is absent, assume it to be zero.
6) The A i values will appear in every other space in each

row, and the elements on the principal diagonal of the

array constructed in this manner are values for Al for

different values of n.

7) The values of Ai obtained using the method of Table

I may differ from those obtained directly from Chebyshev

polynomials by a common factor. However, since we need

only the ratios of the Ai, itdoes not matter.

Following the above procedure, we are able to determine

the following junction reflection-coefficient magnitude

ratios:

A1:A2:... :A~+l=al: az:”:a~+l+1 (30)

where ai = A, /A1. Assuming the impedance steps are small,

TABLE I
COMPUTATION OF A, RATIOS

.
n+ a

—
a

n= ~
2sirlb’ ~

—
a a

n=:2 — -a

sin281 2sin211

Letc.

(25) can be written approximately as

z,
Ai= ~ ~ln—>0.

2 Zi_~
(31)

Plugging (31[) into (30) and performing some manipulation

gives

1( Z1 Z1 Zn
ai ln~-t-ln~+ ““’ +ln —

0 2 z n+l )

al.+ az+. ..++l+l ‘

Z*
in—- =

I

for n odd

‘i-~

(

Z1 Z1 z
ai ln~-1-ln~+ .“” +ln&

o 2 n )

al+az+. ..+a~+l ‘

\ for n even

ai(ln Vl+ln Vz+ ““” +ln V.+l)
.

a1+a2+. ..+au+1

alln(VlV2” “. V.+l)
.—

al+az+. ..++l+l

‘I ln(Smax, s ).
a1+a2+. ”.+aH+l”

(32)

(30), and knowingKnowing the ai by use of Table I and

s mm,,, we can then compute all the ratios Zi/Zi _ ~ by use

of (32).

As shown above, the normalized impedance of each

section is obtained using the first-order approximation,

while the nurmber of sections needed is calculated using the

exact formula of (22). We computed the attenuation re-

sponses of some idealized designs using (12) and compared

them with responses of approximate designs obtained using

the first-order theory. They agreed very well in the maxi-

mum attenuation A mm, but showed big differences both in

the equal-ripple bandwidth and in the ripple size. An

approximate design showed 20-dB maximum attenuation,

18-percent equal-ripple bandwidth, and 0.000065-dB ripple

as compared to a 20-dB maximum attenuation, 10-percent

bandwidth, and 0.00087-dB ripple design objective. These

discrepancies in the equal-ripple bandwidth and the ripple
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size are believed to have come from neglecting the higher

order reflections and from the approximation used in (31).
In order to reduce such errors, some modifications were

made in the design procedure. From (12), it can be shown

that the input reflection coefficient for an exact Chebyshev

bandstop design is

pe =

(“)Tn ~
1

(33)

The corresponding approximate equation which is con-

sistent with ignoring higher order reflections is

–( sine \

(34)

(Equation (34) is analogous to [7, eq. (36)] for the step-

transformer case.) A correction was introduced by making

the ripple sizes of (33) and (34) the same at the band edge.
By replacing f)l with 0[ in (34) and setting Pale=0[ = Pgl6=6,,

we get

fl~=sin-~

I

1

(

–1 /

( )) 1

(35)
cosh S 1

cosh cosh – 1 —
cosh -1 S sin el

where S is given in (23), 01 is given in (18), and

ln(smax,~)s’= s _l
max, p

(36)

Parameter d[ calculated using (35) is then used in place of

81 to generate Table 1, that is, in (29), 0( replaces 191.

Application of this approach to examples showed that

use of (35) in (29) resulted in a greatly improved accuracy

in the passband ripple (the decibel passband ripple was

typically within a factor of 1.1 or better of the specified

decibel value instead of being off by more than a factor of

ten in some cases). However, the fractional bandwidth at

the equal-ripple level was only moderately improved. In

the previously cited example having a 10-percent equal-rip-

ple bandwidth objective, the use of (35) resulted in a

15-percent equal-ripple bandwidth as compared with 18-

percent when (35) was not used. Importantly, the agree-

ment at the 3-dB bandwidth level was much better. For the

same example, the stopband width at the 3-dB level for an

exact design was 7.2 percent, for an approximate design

obtained utilizing (35), the 3-dB stopband width was 7.8

percent, while, without the correction in (35), the width

was 8.7 percent. In all cases, the desired peak attenuation

was obtained with high accuracy.

The 3-dB bandwidth (A~)q ~~ can be well estimated

using (12). Let OS~~ be the electrical length of each section

at the lower 3-dB frequency “of the stopband; then from

(12)

“( 1
ncosh–l —

sin 01)}11(37)

where 61 is given in (18), and

(A.f)q~B=2_%.

fo T
(38)

The prototype circuits for bandstop filters of the form in

Fig. 3(a) typically have increasing values of Z~l ~=.dd as

one moves towards the center of the filter and decreasing

values of Z~ I~= evenas one moves towards the center of the

filter. This is not very practical for DW gratings. A more

practical form is shown in Fig. 3(b), where all of the

even-numbered sections have been replaced by line sec-

tions of impedance ZO; while the odd-numbered sections

are all of an impedance higher than ZO. This configuration

is then amenable to being realized as a uniform DW with

notches cut into it to create the higher impedance line

sections. An approximate procedure for converting designs

as in Fig. 3(a) to the form in Fig. 3(b) is to make

Zi z,

[)z z—l + Z,+l
zl’lt+d = zo

2
(39a)

Z,’lz=even=q. (39b)

This procedure was found to affect the responses of trial

designs very little. For example, a design having a 0.00087-

dB ripple objective, the ripples near cutoff are a little large

but taper down to be less than the design objective at low

frequencies, as are shown in Fig. 8(b). The approximation

has virtually no effect on the stopband.

It is helpful as a design guide if we have theoretical plots

showing the relations between the number of grating

notches and the equal-ripple. bandwidth, and also between

the maximum impedance ratio r~= (which is the normal-
ized impedance at the center of the grating) and the

bandwidth, for given maximum stopband decibel attenua-

tion A ma and passband decibel ripple size A,. Using (22)

and the generalized synthesis procedure in Table I, we

made theoretical plots in Fig. 6. Fig. 6(a) is the plot for a

bandstop filter prototype with A mm = 20 dB and xl, =

0.00087 dB, which gives a minimum of 37-dB return loss in

the passbands, such as might be a desirable goal if filters
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Fig. 6. Theoretical plots to be used in estimating the number of notches
n and the maximum impedance ratio rma required in a fmndstop filter
prototype having a given equal-ripple bandwidth, passband ripple A,,
and maximum attenuation A ma.

like this are used as gratings in a bandpass filter l~e that in

Fig. 11. Fig. 6(b) and (c) are generalized plots for A~a = 20

dB and A~~ = 30 dB, respectively, with A, as a parame-

ter.

IV. REALIZATION OF A BANDSTOP FILTER FROM A

TRANSMISSION-LINE PROTOTYPE

In order to realize the prototype circuit in Fig. 3(b) with

a uniform DW having notches cut in it, the length, width,

and location of each notch must be determined. Using the

measured design data such as that shown in Fig. 4, we can

determine the value of w,/ WO(hence, the required notch

b-—---+--+
I I

2, zo~
I

2,
I

(a)

y-“
. .

I

z, 2.; 2,

7
I

I t----

L$++++j

(b)

Fig. 7. At (a) is shown a period of a uniform grating whose stopband-
center frequency is ~~. At (b) is shown a period whose dimensions are

altered to give a stopband-center frequency ~0.

depth) for a given impedance ratio r,= 2;/20 (see Fig.

3[b)). Therefore, if we fix WO, the w, required for notch

section i can be determined knowing r, of the correspond-

ing prototype section. Next, we have to determine the exact

length of each line section in order for every period of the

grating to be resonant at the same frequency ~0 (which is

the center frequency of a bandstop filter) regardless of the

notch depth. By a period of the circuit in Fig. 3(b) we

mean a section composed of a given notch plus half of the

ZO section on each side as in Fig. 7. Using the design data

in Fig. 4 on,ce again, we can read the value of the stopband

center frequency f~ for a given notch depth (i.e., wl/ WO

value). We ueed to adjust every period of the circuit in Fig.

3(b) so as tc) have the same resonant frequency j~ = ~0 (the

desired stopband center frequency of the filter). This length

correction scheme is shown in Fig. 7, where P is the period

of the test grating and PC is the period of the length-cor-

rected grating section. Now, let &Ve be the average prcJpa-

gation constant at the resonant frequency ~( of the test

grating with the desired wl/ WOvalue. Then

Baveplf=f; = T radians (40)

where /3aveis defined as

pave. &!p (41)

and /30 and & are the propagation constants of 20 and ZI

sections, respectively. The parameter &v, varies from one

section of a filter structure to another because of the

varying notch depths. For a given section of the structure

with average phase constant ~av,, and by using a Taylor

series expansion, we obtain

d(&vep)
pwepl f=.fo z ~av.pl f=f~ + df (fO-f;)

f=f6

d(&wJ’)
=’77 + f= fo(fo-fd).df ,

(42)

Now let PC be the corrected length such that at the desired
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center frequency ~0

Bavepclf=,o = ~ radians. (43)

Then, from (42) and (43)

~ _ &vepclf=fo = m’

P – Bavel’lf=fo l%veplf=fo

.

~ + d(&eP;
(44)

df (h-f:) “
f=f~

h our trial design, the quantities d(/3av.P)/df 1~=~6in (44)

were evaluated using the effective dielectric constant (EDC)

method, and corrected periods PC were computed for the

entire structure. The corrected length 1 for each period (see

Fig. 7(b)) was then scaled to bring the entire structure into

synchronism at the same frequency ~O.

V. CORICERN~~G TEI~ CORRECTION OF DESIGN

BAINDVJI~TH TO ALLOW FOR DISPERSION

In the synthesis of a prototype as in Section III, it is

necessary to use an oversized stopband width because this

width will shrink due to dispersion in the DW filter. A

simple way to estimate dispersion in the DW filter is to

estimate the nomimd impedance ratio r in the center part

of the filter where the values of r are largest and nearly

uniform. By regarding the maximum impedance ratio r~=

(which is the impedance ratio at the center of the filter) as

the nominal ratio in the center part of the filter, we

developed a procedure to estimate r~n from the design

specifications. This procedure used some of the concepts in

[9] where sections of a lumped-element, low-pass filter

prototype designed on the insertion-loss basis were related

to corresponding transmission-line filter sections with the

aid of image analysis. Following the idea in [9], we can

derive an expression for r~= given by

(2- M)-+2Jm
r=ma

M
(45)

where

M=
,kgk:(a,),sin’[~(’-w)l “’)

where g~ and g~ + ~ are the two center elements of a

low-pass prototype [5, ch. 4] having the desired passband

ripple and a number of elements n obtained using an

estimated 01 value in (22). The parameter O; is the cutoff

frequency of the low-pass prototype. After estimating rmm

by use of (45) and (46), the notch and spacing dimensions

in the center of the filter can be estimated with the aid of

Fig. 4 and (44). Having ~stimated dimensions for the

dominant part of the grating, an estimated value of the

parameter D can be obtained using (llb) and the EDC

method [4]. For purposes of designing the transmission-line

prototype as discussed in Section III, the desired fractional

bandwidth should be multiplied by D to compensate for

the stopband-width shrinkage that will result from disper-

sion.

I.0 I

flfo

(a)

f/f.

0.4 0.6
0

0.8 I.0

z –—–T–—–. —

‘o.m4L___J—l
(b)

Fig. 8. (a) The computed attenuation characteristics of a trial grating

design including correction for dispersion. (b) The solid line shows the

computed passband ripple characteristic for a design of the form in Fig.

3(b).

As an example, for the previously discussed trial design

with 0.00087-dB passband ripple, by (45) and (46) we

estimated r~= = 1.117, while r~= obtained from the whole

synthesis was 1.125. From this estimated r~m of 1.117 and

the design data in Fig. 4, wl/ WO= 0.46 and f{= 10.53

GHz were obtained. Then using the length correction

equation of (44) for P = 2L = 0.462 in and f.= 10 GHz,

we got P=/I’ = 1.071. At this point, the lengths and the

widths of the center fundamental section were estimated.

Finally, D in (llb) was calculated. The derivatives in (llb)

were calculated using the EDC method [4] and we obtained

D = 1,321. The prototype had a 3-d13 stopband width of

7.82 percent. Therefore, the dispersion-corrected 3-dB

stopband width for the DW bandstop filter can be esti-

mated as 7.82 (percent)/l .321 = 5.92 percent. A more com-

plete calculation using a linear correction for dispersion

computed for each individual section gave 5.93 percent,

while the measured stopband width at the 3-dB level was

6.05 percent. The approximate procedure for estimating

the dispersion-corrected bandwidth seems to work very

accurately.

VI. EXPERIMENTAL RESULTS

Using the realization procedure mentioned in Section

IV, a DW bandstop filter was fabricated whose theoretical

responses were computed to be as shown in Fig. 8(a) and

(b). The DW utilized Rexolite 1422, which has c,= 2.55,

and the guide was 0.4-in high by 0.5-in wide with notches

as in Fig. 1 ranging from 0.021-in deep at the ends to
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,
12

FREQUENCY IN GHz

Fig. 9. The measured attenuation characteristic for the same design as

in Fig. 8(a) and (b).

FREQUENCY IN GHz

Fig. 10. The solid line shows the measured return-loss characteristic for

the same bandstop grating as in Fig. 9. The dashed line suggests the
limit of sensitivity of the measurement system.

0.141-in deep at the center of the grating. Fig. 9 shows the

measured attenuation, which is in excellent agreement with

the theoretical response. The floor attenuation in Fig. 9 is

due to the loss of the mode launchers at the ends and the

dissipative loss of the guide itself. The measured peak

attenuation is almost exactly 20 dB above the attenuation

floor, while the 3-dB stopband bandwidth is about 6.05

percent as compared to a theoretically estimated 5.92 per-

cent, as mentioned in Section V. Fig. 10 shows the mea-

sured return loss. The dashed line shows the return loss of

a load on the dielectric waveguide without a grating and

suggests the measurement limits of the test setup, which

included a mode transducer from metal guide to DW. The

solid line shows the measured return loss of the filter, and

it is seen to have stronger sidelobes than the desired

– 37-dB maximum. Computer studies suggest that errors in

the desired very low sidelobes could easily be due to some

lack of synchronism between the various parts of the

grating having different notch depths.

VII. APPLICATION TO BANDPASS FILTERS

Precision bandstop grating designs of this sort also have

potential application for use in bandpass filters. Fig. 11

shows a bandpass filter made with a 3-dB coupler and two

gratings with loads at their right ends. It can be shown that

when the gratings are reflecting, power entering the coupler

at port 1 will emerge at port 2 yielding a passband.

However, when the gratings are not reflecting, power enter-

Fig. 11. A bandpass filter formed from two DW bandstop gratings plus
a DW 3-dB coupler.

ing at port 1 will pass through the gratings and be ab-

sorbed by the loads at the right, thus creating a stopband

with respect to transmission from port 1 to port 2.

Matthaei et al. [2] have discussed the fundamentals of a

bandpass filter technique which uses parallel gratings with

coupling between them. However, that technique appears

to be most practical for filters having bandwidths of the

order of one percent since, when using that technique, the

passband width of the filter must be considerably less than

the image stopband width of the gratings. It can be shown

that the structure in Fig. 11 has potential application for

passband widths up into the 5–10-percent range. This is

because, for the structure in Fig. 11, the passband for

transmission from port 1 to port 2 corresponds to the full

width of the grating stopband.

VIII. CONCLUSIONS

Precision design and realization procedures have been

obtained fclr DW bandstop filters. The design pro(cess

utilized a transmission-line prototype filter which was de-

signed using various simplifying approximations. The re-

sulting prototypes gave the desired passband ripple and the

desired attenuation characteristic at the 3-dB level or above

with good accuracy, but tended to give an oversized stop-

band width at the equal-ripple level. The results of a trial

design with extremely demanding design objectives yielded

an attenuation characteristic which was in most respects in

excellent agreement with the objective. A simple dispersion

correction method which uses the combination of the im age

and insertion-loss points of view has been presented and it

worked very well. The much more sensitive return-lloss

characteristic did not meet the very difficult – 37-dB side-

lobe objective as well, but it is believed that by use of more

precise design data appreciably more precise return loss

should be possible.
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